ANALYSIS OF A SCAB DEFECT FROM A WCC CASTING

Published by the
STEEL FOUNDERS' SOCIETY OF AMERICA

Malcolm Blair
Technical and Research Director

March 1993
ANALYSIS OF A SCAB DEFECT FROM A WCC CASTING
Charles E. Bates¹ and Larry Tillery²

ABSTRACT

The optical and SEM examination was conducted on a scab defect removed from a WCC steel casting. The scab was a result of slag attack of the mold during pouring. The matrix of the scab consisted of a mixture of calcium, aluminum, and manganese oxide. This matrix surrounded zircon sand grains which were being decomposed by the heat and the oxidizing environment. A sintering reaction resulting from the slag attack of the sand opened up pores in the sand.

The incidence of this type of scab defect can be reduced by minimizing slag carry-over from the melting furnace and reoxidation during pouring.

¹ Charles E. Bates is the Head of the Metals Section at Southern Research Institute.
² Larry Tillery is Senior Research Technician at Southern Research Institute.
STEEL PROCESSING

A sample of sand from the sand-metal interface of a WCC steel casting was removed during mold shakeout. The metal was WCC poured at a temperature of 2880°F. The mold was green silica sand that had been faced with green zircon sand. The scab defect was about 1.5 inches in diameter on the surface of the casting.

RESULTS AND DISCUSSION

The appearance of the scab defect is shown in Figure 1. Figure 1(A) illustrates the side adjacent to the casting, and Figure 1(B) illustrates the sand side of the defect.

The optical microstructure of a cross section through the scab is illustrated in Figure 2 at a magnification of 25x. The scab appeared to be composed principally of zircon sand, metal oxides, and relatively large pores formed during a sintering reaction between the metal oxides and the zircon.

Higher magnification micrographs of two areas of the scab are presented in Figure 3 at 200x. The gray granular material in both micrographs was zircon sand (ZrSiO₄). The very fine particulate material distributed around the zircon sand grains is zirconia (ZrO₂) formed by decomposition of zircon under the influence of the oxidizing slag and the high temperatures.

Several areas of the scab were analyzed in a scanning electron microscope using energy dispersive x-ray analysis (EDXR). The regions analyzed are indicated by the letters and arrows in Figure 4.

Region "A", a nearly continuous matrix phase of the scab, contained substantial amounts of alumina, silica, calcia, and manganese oxide, as illustrated by the spectrum in Figure 5. The high calcium concentration coupled with the presence of manganese, alumina, and silica suggests slag carry-over from the melting furnace or AOD furnace.

Region "B" consisted of a very finely divided particulate material distributed in the slag matrix. The spectrum from Region "B" is illustrated in Figure 6. The finely divided particulate material is zircon in the process of being decomposed into ZrO₂ and SiO₂. This particulate material lies in a matrix of alumina, calcia, and manganese oxides.

Region "C", one of the two phases of the matrix, was rich in silica and manganese oxides with small amounts of aluminum and magnesium oxide, as illustrated by the spectrum in Figure 7. The presence of magnesium oxide suggests some attack of the furnace lining by the slag.

The granular material indicated by the arrow "D" was found to be zircon, as shown by the spectrum in Figure 8.
SUMMARY

The optical and SEM examination conducted on the scab removed from a WCC casting indicated the scab to be a result of slag attack of the mold during pouring. The matrix of the scab consisted of a mixture of calcium, aluminum, and manganese oxide. The matrix surrounded zircon sand grains which were being decomposed by the heat and the oxidizing environment. A sintering reaction resulting from the slag attack on the sand opened up pores in the sand facing. This type of slag attack can be reduced by minimizing slag carry-over and reoxidation during pouring.

7048.20F
USE OF THIS REPORT AND INFORMATION CONTAINED THEREIN

Publicity

This report and the information contained therein is the property of the individual or organization named on the face hereof and may be freely distributed in its present form. However, Southern Research Institute hereby reminds Sponsor that no advertising or publicity matter, having or containing any reference to Southern Research Institute, shall be made use of by anyone, unless and until such matter shall have first been submitted to and received the approval in writing of the Institute. (The Institute does not usually approve any type of endorsement advertising.)

Limitation of Liability

Southern Research Institute has used its professional experience and best professional efforts in performing this work. However, the Institute does not represent, warrant or guarantee that its research results, or product produced therefrom, are merchantable or satisfactory for any particular purpose, and there are no warranties, express or implied, to such effect. Acceptance, reliance on, or use of such results shall be at the sole risk of Sponsor. In connection with this work, Southern shall in no event be responsible or liable in contract or in tort for any special, indirect, incidental or consequential damages, such as, but not limited to, loss of product, profits or revenues, damage or loss from operation or nonoperation of plant, or claims of customers of Sponsor.

Report No,: SRI-MMER-92-013-7048.20F

To: Steel Founders’ Society of America
 455 State Street
 Des Plaines, IL 60016

Date: March 1993
Figure 1. Scab Defect Removed from WCC Casting. (A) Adjacent to Casting, (B) Opposite to Casting Surface.
Figure 2. Optical Microstructure of Scab. (25x)
Figure 3. Optical Microstructures of Scab. (200x)
Figure 4. SEM Micrograph of Scab. (200x)
Figure 5. EDXR Spectrum of Scab Region A.
Figure 6. EDXR Spectrum of Scab Region B.
Figure 7. EDXR Spectrum of Scab Region C.
Figure 8. EDXR Spectrum of Scab Region D.